
www.manaraa.com

A Composite Stabilizing Data Structure�

Ted Herman and Imran Pirwani

Department of Computer Science, University of Iowa
{herman,pirwani}@cs.uiowa.edu

Abstract. A data structure is stabilizing if, for any arbitrary (and possi-
bly illegitimate) initial state, any sequence of sufficiently many operations
brings the data structure to a legitimate state. A data structure is avail-
able if, for any arbitrary state, the effect of any operation on the structure
is consistent with the operation’s response. This paper presents an avail-
able stabilizing data structure made from two constituents, a heap and
a search tree. These constituents are themselves available and stabilizing
data structures described in previous papers. Each item of the composite
data structure is a pair (key,value), which allows items to be removed
by either minimum value (via the heap) or by key (via the search tree)
in logarithmic time. This is the first research to address the problem of
constructing larger data structures from smaller ones that have desired
availability and stabilization properties.

1 Introduction

Availability is an important topic in online system design. Ideally, a system
should respond to requests in a timely manner in spite of hardware failures,
bursts in load, internal reconfigurations, and other disruptive factors. The usual
technique for ensuring availability is to engineer a system with sufficient redun-
dancy to overcome failures and resource shortages [13, 11, 5].

One attraction of self-stabilization is that it does not require the traditional
type of resource redundancy to deal with faults. The question then comes to
mind, can self-stabilization be enhanced to support system availability? We be-
gin to address this question with a low-level task, which is to consider data
structures. Since data structures are frequently used in software for systems, the
key question is: can data structures that support availability in spite of tran-
sient failures be constructed? The answer is not obvious, since most operations
on data structures either abort, get caught in a loop, throw exceptions, or have
unpredictable behavior when internal variables have invalid values. Specifically,
we study one data structure in this paper, a composite data structure made
from a heap and a search tree. This data structure is of interest because it shows
how one available data structure can be constructed from smaller, available data
structures (of course, general compositional methods are the ultimate goal, but
examples are helpful to understand the technical difficulties).
� This research is sponsored by NSF award CAREER 97-9953 and and DARPA con-
tract F33615-01-C-1901.

A.K. Datta and T. Herman (Eds.): WSS 2001, LNCS 2194, pp. 167–182, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

www.manaraa.com

168 Ted Herman and Imran Pirwani

The literature of self-stabilization differs from our treatment in several ways.
First, we do not consider a distributed system, which is the normal model for
self-stabilization [3]. Second, most self-stabilizing algorithms make no guaran-
tees about behavior before the system reaches a legitimate state — whereas
we require some guarantees for availability. Third, the data structure model of
operations in this paper restricts transient faults to effect only the variables of
the data structure and not the internal variables of an operation underway (in
principle, our results could be extended to allow such corruption as well). Our
data structure results are stabilizing in the following sense. Initially, the content
of a data structure may be arbitrary and corrupt. During some initial sequence
of operations on the data structure, the response time of each of these opera-
tions could be abnormally large, but not larger than that for a legitimately full
data structure; and some operations during this sequence could respond with
errors, such as reporting that an item could not be inserted, even though the
data structure is not full. In all cases, however, the response is consistent with
how the operation changed the data structure. Finally, after a sufficiently long
sequence of operations, the data structure’s state is legitimate, and thereafter
all operations have normal running times and responses.

While there are numerous studies of fault-tolerant data structures, the fault
model for these studies does not consider recovery from unlimited transient faults
in the data structure. Self-stabilization is required to deal with unlimited tran-
sient faults, yet very few papers in the area of self-stabilization treat data struc-
tures in the model of operations applied to the structures. Two works [12, 10]
mention self-stabilization the context of objects that undergo operations before a
legitimate state is reached. The challenge of [10] is that operations are concurrent
and wait-free, which is an issue beyond the scope of our present investigation.
The notion of an available and stabilizing data structure is new in [8], which
presents an available, stabilizing, binary heap. An available and stabilizing 2-3
tree is described in [9].

The data structures investigated in this paper and related papers [8, 9] are
fixed-capacity structures. The reason for fixing the capacity is to include the
design of dynamic storage allocation in the implementation. Standard texts pre-
senting data structures may gloss over the role of allocation in dynamic struc-
tures, but for the case of stabilization, an incorrect initial state can make the
storage allocation pool appear empty even though the data structure contains
very few items. The situation is even more complex when numerous data struc-
tures share a common allocation pool. At this stage of research, we investigate
single data structures, hence the constraint of fixed capacity to make the pre-
sentation self-contained. Also, the data structure operations considered here are
single-item operations (insert, delete, find); operations such as set intersection
or union are not investigated. Many research directions thus remain unexplored,
including inter-structure operations, data structures of unlimited capacity, and
shared allocation pools (and of course, the question of concurrent operations).

Organization of Paper. Section 2 describes the model of data structures and op-
erations, and then defines the availability and stabilization precisely. Section 3

www.manaraa.com

A Composite Stabilizing Data Structure 169

presents a simple example of an data structure and briefly reviews the construc-
tions for heap and search tree. Section 4 defines the main problem we consider,
and sketches an impossibility result related to this problem. Section 5 gives an
overview of the main construction. Detailed correctness proofs of the construc-
tion are omitted from this extended abstract. The paper ends with discussion in
Section 6.

2 Availability, Stabilization, and Operations

A data structure is an object containing items. The object is manipulated by a
fixed set of operations. Each type of operation is defined by a signature (opera-
tion name and invocation parameters) and a set of responses for that signature.
The relation between a signature and its response is specified by sets of sequen-
tial histories of operations applied to the data structure. That is, we specify
operation semantics by a collection of legal sequences rather than by present-
ing pseudocode. We do this in order to maximize the freedom of the object’s
implementor to choose data representation and algorithms.

A history is an infinite sequence of pairs 〈(op1 res1) (op2 res2) · · · 〉 where
opi is the i-th operation invocation (including its parameters) and resi is the re-
sponse to opi. A point in a history refers to the state of the data structure either
before any operation or between two operations opi and opi+1. The content of
the data structure at a point t is defined directly if t is the initial point of the
history; if t is not the initial point, then the content is defined in terms of the
sequence of operations and responses leading up to point t. Let Ct denote the
content at point t. Let |Ct| denote the number of items in the data structure at
point t. All data structures have a fixed capacity, which is an upper bound on
the number of items the data structure is allowed to contain.

We illustrate content specification by history with a small example, a data
structure for a set of at most K items with insert and remove operations. Let
the content of the set be empty at the initial point of any history. The content Ct

at point t following operation opt is defined recursively: if opt is an insert(x),
and x �∈ Ct−1 ∧ |Ct−1| < K, then Ct = Ct−1∪{x} and the response to the oper-
ation is ack ; if opt is an insert(x) and |Ct−1| = K ∨ x ∈ Ct−1, then Ct = Ct−1

and the response to the operation is full if |Ct−1| = K or ack otherwise. If opt

is a remove(x), then Ct = Ct−1 \ {x} and the response is ack.
Throughout the paper we assume the following for data structures and their

operations. Operations are single object methods and we suppose that all oper-
ations in a history are operations on the same data structure (so the example
above cannot be extended to allow set union and intersection operations, which
combine objects). An operation opt is called moot if Ct = Ct−1. We classify each
operation opt as either successful or unsuccessful depending on its response, and
this classification is specified as part of the suite of operations for a data struc-
ture. In this classification, all unsuccessful operations are moot, but the converse
need not hold.

www.manaraa.com

170 Ted Herman and Imran Pirwani

The intuition for “unsuccessful” classification is that, although the operation
is guaranteed to be moot, the response of the operation may not be trustworthy
if the history begins with a data structure damaged by a transient fault. We
formalize this below in the definitions of availability and stabilization. For the
set example above, only the response full could be classified as an unsuccess-
ful operation; if full is an unsuccessful response, then intuitively, in a damaged
state, an insert operation that responds full is allowed to do so even though
the set contains fewer than K items.

A well-formed history is one where the responses of all operations agree with
the definition of content for the data structure. A detailed specification of what
is means for a history to be well-formed depends on the semantics for the data
structure operations, their responses, and the definition of content. A legitimate
history is a well-formed history so that the operation running times are within
the bounds, as a function of content, given by the implementation for that data
structure. For example, suppose the set data structure has an implementation
where the running time for an operation on a set of size m is linear in m. An
example of an illegitimate history is one where an insert(x) operation fails
at some point t even though |Ct| < K. Another example of illegitimacy is a
remove(x) operation that has 2m running time at point t although |Ct| = m.
Observe that if all moot operations are removed from a legitimate history, the
result is either a legitimate history or a (finite) prefix of a legitimate history.

Given history H , let Ht denote the suffix of H following point t. Let U(I),
for a history I or segment I of a history, be the sequence obtained by remov-
ing all unsuccessful operations from I. A history H is available if there exists
a point t and a sequence of operation invocations P such that P ◦ U(Ht) is a
well-formed history or a (possibly empty) finite segment of a well-formed history
(◦ is the sequence catenation operator); also, the running time of any operation
in H is no more than the worst-case running time of any operation, taken over
all legitimate histories (usually this worst-case running time is obtained for an
operation on a full data structure). Because unsuccessful operations are moot,
it follows that legitimate histories are available histories. Examples of histories
that are available but not legitimate include histories with operations whose
running times larger than one would expect for the content, and operations that
return unsuccessful responses in unexpected cases (e.g. an insert(x) responds
full even though the content has less than the data structure’s capacity number
of items). An implementation of a data structure is available iff all its histories
are available. A trivial implementation of a set to guarantee availability would
be to have any remove do nothing to the data structure and respond ack in O(1)
time, and to have any insert do nothing to the data structure and respond full
in O(1) time. To see that this implementation is available, take any history H ,
let t be the initial point of H , let P be empty, and choose Ct to be the empty
set. Then P ◦ U(Ht) is a legitimate history since it has no insert operations
and remove operations are moot.

A history H is stabilizing if there exists a point t and a sequence of operation
invocations P such that P ◦ Ht is a legitimate history. In the definition of a

www.manaraa.com

A Composite Stabilizing Data Structure 171

stabilizing history, there can be many choices for the point t and prefix P to
make P ◦Ht a legitimate history; call t the stabilization point if there exists no
point s preceding t such that Q ◦Hs is a legitimate history for any prefix Q. An
implementation of a data structure is stabilizing iff all its histories are stabiliz-
ing. The stabilization time of a stabilizing history H is the number of operations
preceding its stabilization point. The stabilization time of an implementation of
a data structure is the maximum stabilization time of all of its histories (if there
is no maximum, then the stabilization time is infinite).

3 Available and Stabilizing Components

Before presentation of the composite data structure in Section 4, we review first
the constituent data structures used to build the composite. Some constituents
are trivially available and stabilizing: for instance, we may regard an atomic
variable (word of memory) to be a data structure supporting read and write
operations. It is simple to show that such variables are available and stabiliz-
ing. Interesting data structures such as heaps and search trees require nontrivial
constructions to satisfy availability and stabilization. Between the trivial case of
a variable and more advanced data structures, we consider first in this section
two elementary data structures, a queue and a type of stack, to illustrate some
challenges of implementing availability and stabilization.

3.1 Queues, Stacks, and Conservative Implementations

Two elementary examples of available and stabilizing data structures are de-
scribed here, a queue and a type of stack. We then show two variations on the
queue that do not have available and stabilizing implementations. These vari-
ations on the queue are somewhat artificial, but they are useful to illustrate
difficulties that arise later in the presentation of a composite data structure. An
important concept introduced in this section is a conservative implementation
of a data structure. Informally, an implementation is conservative if operations
cannot substitute values for missing data.

A K-queue is a queue with a capacity of K items supporting enqueue and
dequeue operations. The response to an enqueue(x) operation is either ack or
full, and the response to a dequeue is either an item or empty. Only the full
response is classified as an unsuccessful response. The content Ct at any point t
can be defined from the sequence of successful enqueue operations up to point
t and the sequence of dequeue operations that return items up to point t (we
omit the formal definition). In any legitimate history, the running time of an
operation is O(1). In any well-formed history, responses have the following prop-
erties. An enqueue operation at point t responds full iff |Ct| ≥ K, and otherwise
responds ack ; a dequeue at point t responds empty iff |Ct| = 0 and otherwise
responds with the initial item of sequence Ct.

The conventional implementation of a bounded queue by a circular array
is an available and stabilizing K-queue. Let A[0..(K − 1)] be an array of K

www.manaraa.com

172 Ted Herman and Imran Pirwani

items and let head and tail be two integer variables. The K-queue is empty if
(head mod K) = (tail mod K), and full if ((tail + 1) mod K) = (head mod
K). An enqueue(x) succeeds iff the K-queue is non-full by writing x to A[(tail+
1) mod K] and then assigning tail ← (tail + 1) mod K (the capacity of this
queue representation is thus K−1 items). The dequeue is similarly defined, with
the result that the state of the K-queue is well-defined for all possible values of
head, tail, and A. By straightforward expansion of the definitions, availability
and stabilization hold for this implementation and the stabilization time is zero.

The composite data structure described in Section 5 makes use of a relative
of the K-queue. A lossy K-stack is a stack with a capacity of K items and push
and pop operations. A push operation for the lossy K-stack always succeeds and
a pop operation always returns an item. The K-queue can be implemented by
an array of K elements and a top variable to contain an index for the top of
the stack, which is incremented modulo K by push and decremented modulo K
by pop. This stack is “lossy” because, for K + 1 consecutive push operations,
the last push writes over the oldest item on the stack. We omit the straightfor-
ward details of the formal definition of this data structure and verification of its
availability and stabilization properties.

The elementary examples of queue and stack become more challenging when
there are domain restrictions on the items contained in the data structure. Con-
sider a queue that may only contain (pointers to) prime numbers as items. The
enqueue operation can return a new response err : the response to enqueue(x) is
err for any nonprime x, and the operation is moot. The running time of enqueue
is no longer constant, because enqueue tests its argument for primality. The
dequeue operation has constant running time, either returning (a pointer to) an
item or the empty response. Now suppose we have an implementation of this data
structure and let σ be the state for some queue of prime numbers. It is possible
for a transient fault to transform σ into some σ′ by changing some (pointers to)
items in the queue from prime to nonprime values. This is a problem because the
dequeue operation can now return a nonprime number. Returning a nonprime
number is not possible in a legitimate history and because an item in response to
dequeue is a successful operation, there is a conflict with availability if dequeue
is allowed to return a nonprime number. The only resolution is for dequeue to
check an item for primality before responding. We do not know of any method
to test primality in constant time, so dequeue will require nonconstant running
time for faulty states such as σ′. If the implementation is also stabilizing, then
every history has a suffix where all dequeue operations have constant running
time. Yet it is impossible for dequeue to distinguish between correct and faulty
states in constant time unless there is a constant-time primality test. Therefore,
every dequeue operation on a nonempty queue checks for primality, which con-
flicts with the running time constraint for a stabilizing implementation. We have
thus sketched the proof of the following.

Lemma 1. No implementation of the prime queue is available and stabilizing.

Another difficulty with a domain-restricted queue is shown by a queue that
may only items of the form a:b with a an even number. Again, execution of

www.manaraa.com

A Composite Stabilizing Data Structure 173

enqueue(x:y) reponds with err for odd x, but this can be checked in constant
time. The dequeue operation can also verify that the head item has an even
first component in constant time, so all operations run in constant time for a
legitimate history. After a transient fault, there could be queue items with odd
first components, so the question arises, what should dequeue do if it detects
that the head is odd? One choice would be to respond with 0:z in place of any
item r:z with odd r found at the head of the queue. This choice would satisfy
availability, because there is a legitimate history where zero is enqueued in place
of any odd value (notice this method cannot be used for the prime number queue
because of running time constraints). If there are further domain restrictions on
items, say a relation between a and b in a pair a:b, or perhaps relationships with
other variables outside the queue, then the substitution of 0:z for r:z would not
be valid.

We call an implementation conservative if no operation returning a data
structure item is allowed to invent the item — a conservative implementation
can only return items that are present in the data structure, and cannot coerce
invalid values to legal ones. This is a key decision in our presentation, and differs
from classical work on self-stabilizing control structures. For classical problems
such as mutual exclusion, it does not matter how illegitimate states are converted
into legitimate ones, but for the stabilization of data structures, we prefer to limit
techniques to conservative measures where data items are not created to satisfy
a domain constraint. The motivation for conservative operations is not just to
make a theoretical problem nontrivial: in practice, stabilizing algorithms that
limit the effect of faults are preferable to those that do not enforce any such
limit [4, 6, 7]. While it is true that a transient fault could inject apparently le-
gal values never actually inserted in a data structure, such transient faults are
uncontrolled, whereas operation implementation can be designed to avoid the in-
jection of artificial values (moreover, practical techniques such as error detecting
codes can decrease the probability of legal values injected by faults).

Lemma 2. No conservative implementation of the x:y queue is available and
stabilizing.

The lemma can be shown by an adversary argument: each dequeue has to dis-
tinguish, in O(1) time, whether the queue is empty or has an item meeting
the domain constraint, and for whatever strategy dequeue uses to examine the
queue, an initial state can be constructed to defeat that strategy.

3.2 Heap and Search Tree Review

The heap and search tree data structures are more complicated than the queue,
and items in the heap and search tree have domain restrictions, unlike a simple
queue. In the heap, an item’s value is the least of a subtree of values, and in
a search tree, item keys are ordered. There is, however, a crucial way in which
these domain restrictions are simpler than the example of the prime number
queue: there is an implementation so that all operations access items via a path

www.manaraa.com

174 Ted Herman and Imran Pirwani

from the tree’s root. This fact generalizes to the observation that, for any val-
ues of items in a such a tree, there is a maximal subtree for which the domain
restrictions hold. For the heap this is called the active heap and for the search
tree this is called the active tree.

The available and stabilizing search tree given in [9] is a 2-3 tree. Its active
tree is defined as the maximal subtree so that the distance from root to leaf is
the same for all leaves, all keys are in order, and several other validity conditions
hold for child and parent pointers. For the available and stabilizing heap [8], the
active heap is taken to be the maximal rooted subtree so that each node’s value is
a lower bound on the values of its children. The table below shows the signatures
and responses for the 2-3 tree and heap structures. The method to ensure avail-
ability is straightforward: all data structure operations are implemented with
respect to the active structure. A consequence of this method is that the active
structure can be unbalanced, so that operations on the active tree may have
no longer have running that is logarithmic in the number of active items. The
remaining implementation task is stabilization, which entails balancing the ac-
tive structure. Informally, the balancing of the active structure is a “background
activity” similar to garbage collection in memory allocation schemes. This back-
ground activity is also needed to repair pointers, repair free storage chains, and
correct various other internal variables of the data structure. Because no actual
background process is assumed by the model of data structures, each operation
on the data structure invokes a limited amount of background processing. The
running time of any call to background processing is O(lg K) in [8,9] in an arbi-
trary state and O(lg n) after the stabilization point, where K is the capacity of
the data structure and n is the number of items in the active structure. These
running times are the same as the operation complexities, since in the worst
case, an active heap or search tree encounters a path of length O(lg K), and
when the structure is balanced, all paths are O(lg n).

signature successful unsuccessful illegitimate legitimate
STinsert(k, d) ack full O(lgK) O(lg n)
STdelete(k) ack O(lgK) O(lg n)
STfind(k) (k, d)/missing O(lgK) O(lg n)
Hinsert(v, e) ack full O(lgK) O(lg n)
Hdeletemin() (v, e)/empty O(lgK) O(lg n)
Hdelete(p) ack O(lgK) O(lg n)

4 Composite Data Structure

The composite data structure presented here is called the heap-search tree. Defi-
nitions of the heap-search operations are explained in this section; the construc-
tion of the heap-search tree is presented in Section 5. The table below presents
our initial table of the signatures and responses of the operations; later in this
section we revise this table, after presenting an impossibility result for a conser-
vative implementation.

www.manaraa.com

A Composite Stabilizing Data Structure 175

signature successful unsuccessful illegitimate legitimate
insert(k, v) ack full O(lg K) O(lg n)
delete(k) ack O(lg K) O(lg n)
find(k) (k, v)/missing O(lg K) O(lg n)
deletemin() (k, v)/empty O(lg K) O(lg n)

Each item of the heap-search tree is a pair (k, v), and the content of the
heap-search tree at any point is a multiset (bag) of such pairs. Below we use
union (∪) and subtraction (\) for multiset operations, so C \ {(k, v)} removes at
most one copy of (k, v) from multiset C. Let s and t be consecutive points in a
legitimate history and let the operation and response occur between s and t. Op-
eration insert(k, v) is moot and responds full if |Cs| ≥ K; otherwise |Cs| < K
and insert(k, v) responds ack, with Ct = Cs∪{(k, v)}. Operation delete(k) re-
sponds with ack ; the operation is moot if there exists no b satisfying (k, v) ∈ Cs,
otherwise Ct = Cs \{(k, v)} for some v satisfying (k, v) ∈ Cs. Operation find(k)
is always moot, and either returns a pair (k, v) for some b satisfying (k, v) ∈ Cs,
or returns missing if no such pair exists. Operation deletemin() returns empty
and is moot if |Cs| = 0, otherwise the response is a pair (k, v) such that v is the
minimal value for any pair’s second component, and Ct = Cs \ {(k, v)} in this
case.

Before making statements about heap-search tree implementations, we first
formalize what it means for an implementation of this data structure to be a
composite of the heap and 2-3 tree. Informally, the implementation is a compos-
ite if it is a construction made by assembling one heap and one 2-3 tree, so that
any pair (k, v) ∈ Cs is represented by the item k in the 2-3 tree at point s and
v in the heap at point s, and no other data structures are used in the storage
of items. More formally, the implementation of the heap-search tree satisfies the
following three constraints: (i) the composite heap-search tree implementation
has one 2-3 tree S, one heap T , and possibly other data structures used for back-
ground processing; (ii) at any point s in a history, (k, v) ∈ Cs iff (k, d) ∈ Ss and
(v, e) ∈ Ts, where Ss and Ts respectively denote the contents of the 2-3 tree and
heap at point s, with d and e being associated data as defined by operations;
and (iii) for any (k, v) ∈ Cs, the key k is contained only in the 2-3 tree — keys
are not contained in any structure other than the 2-3 tree; similarly, the value
v is not contained in any other structure than the heap. Note that (iii) could
be ambiguous for a structure with integer keys as well as integer heap values,
because a key could coincidentally reproduce a heap value. To resolve this ambi-
guity, assume that keys and heap values are taken from different types (say key
and value) for purposes of defining constraint (iii).

Lemma 3. No conservative implementation of the composite heap-search tree
using the heap and 2-3 tree is available and stabilizing.

The conclusion we draw from Lemma 3 is that either we should settle for an
implementation that is not conservative, or the operations should be modified.
The proof of Lemma 3 (omitted from this extended abstract) points out that

www.manaraa.com

176 Ted Herman and Imran Pirwani

deletemin is responsible for the difficulty, so we propose the following change:
let deletemin have a new response err, to be returned if the value returned
by Hdeletemin does not have a corresponding key in the 2-3 tree. This change
satisfies availability by classifying any deletemin with an err response as an
unsuccessful operation. However to satisfy stabilization, we shall require that no
deletemin be unsuccessful after the stabilization point, since the err response
does not occur in a legitimate history. For application purposes, err is useful
because it informs the deletemin caller that something is incorrect in the heap-
search data structure, but by returning within O(lgK) time, quickly gives the
application the choice of repeating deletemin (and progressing toward stabiliza-
tion) or using some other type of recovery. Lemma 3 can also be proved using the
find operation instead of deletemin, because the search tree may contain dupli-
cate keys in an initial state; the delete has another similar difficulty. Therefore,
for the remainder of the paper, let delete, find, and deletemin return err if
the operation is unsuccessful.

5 Heap and 2-3 Tree Composite Construction

5.1 Variables, Constituent Structures, and Pointers

The composite data structure is composed of two binary variables STbit and
Hbit, a variable curcolor with domain {0,1,2}, a K-lossy stack, a heap, and
a 2-3 tree. As explained earlier, all of these constituents (variables and struc-
tures) are available and stabilizing components. Throughout the remainder of
the paper, K is the capacity of the heap-search tree and also the capacity of
the heap and 2-3 tree. For convenience, we use the term nextcolor to mean
(1 + curcolor) mod 3 and the term prevcolor to mean (2 + curcolor) mod 3.

Our construction uses pointers to connect heap items and 2-3 tree items. The
use of pointers in conventional random access memory is challenging because
damaged pointers can lead to further damage in data structures (for instance,
modifying data accessed by a damaged pointer). We make some assumptions
concerning how data, especially the heap and 2-3 tree, are arranged in memory.
We assume that a procedure Hpointer(p) evaluates p and in O(1) time returns
true if p could be an item of the heap, and false otherwise. An implementation of
Hpointer(p) could check that p is an address within a range [Hstart,Hend] de-
fined for heap items, and also check that p is a properly aligned address (Hstart
and Hend are program constants not subject to transient fault damage). Simi-
larly, we assume there is a procedure STpointer(p) to determine whether p can
be a 2-3 tree item.

The next level of pointer checking is to determine whether or not a given p
is a pointer to an item in the active structure. Let STintree(p) respond true if
p is a pointer to an item in the active 2-3 tree, and false otherwise. The run-
ning time of STintree(p) is O(h) where h is the height of the active 2-3 tree.
The implementation of STintree(p) could be similar to one described in [9];
after using STpointer(p) to validate candidacy of p, the procedure follows par-
ent pointers of tree items to verify that the tree’s root is an ancestor, and also

www.manaraa.com

A Composite Stabilizing Data Structure 177

verifies properties of keys in items are such that all items in the path are in the
active 2-3 tree. A similar procedure Hinheap(p) determines whether p is an item
of the active heap. Hinheap(p) can be implemented by tracing the parentage of
p back to the heap’s root. Unlike STintree(p), which consumes O(h) time, the
complexity of following p’s parentage for arbitrary p satisfying Hpointer(p) is
O(lg K) — the running time is O(h) if p is an item of the active heap. In some
cases, the time bound for Hinheap(p) should be constrained, even if the result
is inaccurate. Let Hinheap(p, t) be an implementation that limits the parentage
trace to t iterations, and if t iterations do not suffice to reach the heap’s root,
Hinheap(p, t) returns false.

Each item of the K-lossy stack is a pointer. Items of the heap and 2-3 tree
provide for a data field in the respective insert operations (see (k, d) and (v, e)
in the table defining operations), and we use these data fields for pointers. For an
item (k, d) of the 2-3 tree, d is a pointer. For an item (v, e) of the heap, e = (q, c)
with q being a pointer and c being a “color” in the range {0,1,2}. Our convention
is to refer to d as the pointer associated with the 2-3 tree item (k, d), to call q
the pointer associated with heap item (v, e), and to call c the color associated
with (v, e). We also use the notation x.color to refer the color of an item x.

At any point in a legitimate history, the pointers associated with items in the
active heap and active 2-3 tree should bind a pair (k, v), which means that the
pointer d associated with k in the 2-3 tree refers to an item with value v in the
heap, and in turn the pointer q associated with v refers to the item (k, d). Let
STcross(p), for p a pointer to a 2-3 tree item (k, d), be a boolean function re-
turning true only if Hpointer(d) is true there is a pointer q associated with the
heap item of d, and q = p. A similar function Hcross is defined for heap items,
and we generically use the term crosscheck relation to mean that the pointer as-
sociated with an item, heap or 2-3 tree, refers to an item in the other structure
that has the expected back pointer; we say that two items crosscheck if they
satisfy the crosscheck relation. Note that the crosscheck relation can be checked
in O(1) time, but satisfying the crosscheck relation does not imply membership
in the active heap or 2-3 tree.

5.2 Modifications to Constituent Operations

We change the operations of the heap and 2-3 tree only by adding a some extra
steps to look after the pointers and the color field associated with a heap item.
The reason that pointers are an issue is that items can change location inside
a data structure as a result of insertions or deletions. For the 2-3 tree, this can
occur by node splitting or merging. For the heap, this occurs by item swaps as
part of “heapify” routines to restore the heap property after an item is removed
or added.

The change relating to pointers is: whenever an operation moves an item x,
the operation validates x by a crosscheck, and if the crosscheck holds, then the
operation adjusts pointers so that the crosscheck relation will be hold after the
item moves. Conversely, if the crosscheck relation does not hold for x prior to
the move, then the pointer is forcibly invalidated so that crosscheck will not hold

www.manaraa.com

178 Ted Herman and Imran Pirwani

(accidentally) as a result of moving x. This change applies to both heap and 2-3
tree operations, since procedures of both can move their respective items within
the active structures. Background activities that move items are also changed to
attend to item movement. In particular, the background heap activity includes
an balance routine that deletes an item of maximum depth, reinserting it at
minimum possible depth; the movement of this item by balance requires pointer
adjustment so that subsequent crosschecks are valid.

The change relating to colors only applies to heap operations and back-
ground activities. Whenever an operation or background routine examines an
active heap item with color c, it pushes a pointer to that item on the K-lossy
stack if c = nextcolor, and then assigns the item’s color to be the value of
curcolor. A single operation or background routine for the heap may examine
many nodes (for instance, examining all the nodes along a path from root to a
leaf), so an operation can push many pointers on the stack as a result of this
change. However, since checking the color field and stack pushes are O(1) time
steps, the operation complexities of the heap are unchanged.

Two background activities of the constituent structures have new duties in
the composite data structure. First, we review terminology for the existing back-
ground operations. The heap has a background operation called Hscan and the
2-3 tree has a similar operation called STscan. One intent of these background
operations is the same for both structures, which is to examine a path of nodes
from root to leaf, possibly truncating nodes that are not part of the active struc-
ture, correcting variables within nodes, and in the case of the 2-3 tree, possibly
merging nodes. One Hscan invocation can examine up to lgK items, since each
node in the active heap contains an item. One STscan invocation examines two
items by looking at two paths from root to leaf (only the leaves of the active
2-3 tree contain items). In any sequence of operations on a structure the paths
chosen by Hscan or STscan advance through the tree in a standard “left to right”
order. The path chosen in an initial state is unpredictable, but after examining
the rightmost path, the next invocation returns to the leftmost path, so that all
nodes will be examined in any sequence of (sufficiently many) operations.

For the composite data structure, we add a step to Hscan in only one occa-
sion, which is immediately after the rightmost path of the heap is examined: the
assignment Hbit← fH(Hbit, STbit) is executed, for

fH(x, y) =
{

x if x = y
1− x if x �= y

If Hbit = 1 ∧ STbit = 1 as a result of this assignment, then the assignment
curcolor← nextcolor is executed.

One change to STscan resembles the change to Hscan: immediately after
STscan examines the rightmost path of the 2-3 tree, the assignment STbit ←
fST(Hbit, STbit) is executed, where

fST(x, y) =
{

y if x �= y
1− y if x = y

www.manaraa.com

A Composite Stabilizing Data Structure 179

The remaining change to STscan adds extra work in the examination of a 2-
3 tree item. When STscan examines an item (k, d), the procedure crosschecks
(k, d); if the crosscheck indicates that k does not have a corresponding heap
value, then STscan removes (k, d) from the active 2-3 tree. If the crosscheck test
passes, STscan then evaluates Hinheap(d), and removes (k, d) from the active
2-3 tree if Hinheap(d) is false. Finally, if (k, d) passes crosscheck and Hinheap
tests, then STscan assigns c ← curcolor where c is the color variable of the
heap item associated with k.

5.3 New Background Activities

Each invocation of a heap operation contains a call to Hscan. Each invocation of
a 2-3 tree operation contains a call to STscan. The modifications of these back-
ground activities described in Section 5.2 supply most of the effort needed to
stabilize the composite structure; only one additional, new procedure is needed.
We call this new routine trimheap. Procedure trimheap is called once in the exe-
cution of any of the composite operations, and consists of steps shown in Figure
1. By reasoning about the running times of Hpointer, crosscheck, STintree,
Hinheap, and Hdelete, it follows that any call to trimheap requires at most
O(lg K) time at an arbitrary state and O(lg m) time at a legitimate state for a
heap-search tree containing m items (at a legitimate state, the heap’s root has an
accurate height field, which then is used to limit the running time of Hinheap).

We also suppose that each of the composite operations include calls to STscan
and Hscan. Such calls will already be included whenever an operation invokes one
of the appropriate constituent operations, however not all composite operations
invoke constituent operations on both heap and 2-3 tree structures. The find
operation, for instance, invokes STfind but does not include any heap operation;
and although deletemin invokes both Hdeletemin and STdelete in a legitimate
history, it may not do so before the stabilization point, as we show in Section
5.4. Therefore we suppose that trimheap includes calls to Hscan and STscan
as needed, to ensure these constituent background activities execute with each
operation in any history.

5.4 Operations of the Composite

The four operations of the heap-search tree have psuedo-code listed in Figure 1.
We suppose in this figure that if STfind(k) returns an item (a, b), then a pointer
to item (a, b) in the 2-3 tree component is available or can be obtained in O(1)
time. Also, for the sake of brevity, we do not provide details for how to deal
with duplicate key values; we assume that a STdelete(k) will remove the item
return by a STfind(k) immediately preceding, and suppose similar behavior for
insertions.

The usage of crosscheck in the code for deletemin bends our earlier expla-
nation of checking item pointers. This crosscheck(p) should check that the 2-3
tree item referred to by p is an item (k, d) such that d points to the root of the

www.manaraa.com

180 Ted Herman and Imran Pirwani

trimheap

q ← pop()
if (¬Hpointer(q) ∨ ¬crosscheck(q)) return
p← search tree item for q
if ¬STintree(p) return
t← height field of heap’s root
if Hinheap(q, t) then Hdelete(q)

find(k)
if (STfind(k) = missing)

return missing
(a, b)← STfind(k) // a = k
p← address of item (a, b)
if (STcross(p) ∧ Hinheap(b))

(v, e)← heap item via pointer b
return (k, v)

STdelete(k) // delete invalid key
return err

delete(k)
if (STfind(k) = missing) return ack
(a, b)← STfind(k) // a = k
p← address of item (a, b)
if (STcross(p) ∧ Hinheap(b))

Hdelete(b)
STdelete(k)
return ack

STdelete(k) // delete invalid key
return err

deletemin()
t← Hdeletemin()
if (t = empty) return empty
(v, (p, c))← t
if (crosscheck(p) ∧ STintree(p))

(k, d)← 2-3 tree item via pointer p
STdelete(k) // delete (k, d)
return (k, v)

return err

insert(k, v)
d← temporary value
if (STinsert(k, d) = full)

return full
// locate ST item just inserted
(a, b)← STfind(k)
t← address of item (a, b)
e← (t, curcolor)
if (Hinsert(v, e) = full)
STdelete(k) // backout
return full

replace b within 2-3 item by
b← address of (v,e) in heap

return ack

Fig. 1. trimheap procedure and composite data structure operations.

heap — since the heap item t returned by Hdeletemin was located at the root
of the heap prior to being removed.

5.5 Verification

For a given point t in a history of operations on the heap-search tree, let Ht

be the bag of items in the active heap and let STt be the bag of items in
the active search tree. Let At denote the active multiset at point t, defined
by At = { (k, v) | k ∈ STt ∧ v ∈ Ht ∧ (k, v) satisfy the crosscheck relation }. The
expressions |Ht| and |STt| the number of items in the (respective) active struc-
tures. A state of the composite data structure is ST-legitimate if the search tree
component of the state is legitimate as defined in [9]. A state of the composite

www.manaraa.com

A Composite Stabilizing Data Structure 181

data structure is H-legitimate if the heap component of the state is legitimate
as defined in [8]. A state is ST/H-legitimate if it is both ST-legitimate and H-
legitimate. A state is legitimate if (i) it is ST/H-legitimate, (ii) for each item x of
the active search tree, there exists an item y of the active heap such that x and
y are related by the crosscheck relation, and (conversely) (iii) for each item a of
the active heap, there exists an item b of the active search tree such that a and
b are crosscheck related. The availability and closure properties, based on these
definitions, have simpler proofs of correctness than the proof of convergence. To
show convergence, we define a segment of a history to be a color phase if the
curcolor value is the same at each point in the segment. Define colorsafe to
be the weakest predicate closed under heap-search operations such that for any
point s where colorsafe holds, the state of the data structure is ST/H-legitimate
and (∀x : x ∈ As : x.color �= nextcolor).

Lemma 4. Let s be an ST/H-legitimate point in a history and let ms =
max(|Hs|, |STs|). The color phase containing point s terminates at some point
w after at most 15ms operations and max(|Hw|, |STw|) ≤ 16ms. Following any
point s at which ST/H-legitimacy holds and ms = max(|Hs|, |STs|), there occurs
a point t within O(m) operations of any history such that the data structure at
point t is colorsafe and mt = max(|Hs|, |STs|) = O(m).

For any point s in a history of operations on the composite data structure, let
depths(j) for j ∈ Hs be the number of pop operations required to obtain a pointer
to j from the lossy stack (depths(j) =∞ if there is no pointer to item j on the
lossy stack). Let Hs denote the bag of active heap items that for which the cross-
check relation does not hold, that is, Hs contains those active heap items that
do not correspond to any active multiset item. Define stacksafe(m) to be the
weakest closed predicate such that any point s where stacksafe(m) holds, the
state of the data structure is colorsafe and (∀j : j ∈ Hs : depths(j) < 3m).

Lemma 5. Following any colorsafe point s with ms = max(|Hs|, |STs|), there
occurs a point t within O(ms) operations of any history such that the data
structure at point t is stacksafe(ms) and mt = max(|Hs|, |STs|) = O(ms).

Theorem 1. Within O(ms) operations of any history the state of the compos-
ite data structure is legitimate, where ms = max(|Hs|, |STs|) for the initial point
s of the history.

6 Conclusion

There are likely simpler ways to construct a stabilizing available structure with
the signatures of the composite presented in Section 4 (two search trees, an
augmented tree, etc), however our aim was to investigate the composition of a
data structure from given components. Although we present a construction, our
results concerning the larger question are somewhat negative: not everything is
achievable given constraints of (conservative) availability and stabilization (the

www.manaraa.com

182 Ted Herman and Imran Pirwani

possibility of conflict between availability and fault tolerance was observed long
ago [1]).

The reader may wonder whether the case of sequential data structure oper-
ations, without distributed implementation or concurrency, merits any investi-
gation: after all, the very title of [2] is “self-stabilization in spite of distributed
control” (recent definitions of self-stabilization refer only to behavior [14] and
care not whether the system is distributed or sequential). Here, the difficulties to
overcome have to do with two aspects of availability during convergence, namely
the integrity of operation responses and the time bounds of operations. Both
aspects have practical motivation: users of data structures and system designers
of forward error recovery value the integrity of operation responses; and hav-
ing guaranteed time bounds on operations is useful for the design of responsive
applications in synchronous environments. It could be interesting to reconsider
our constraint on the time bound, perhaps allowing some polynomial extra time
during convergence.

References

1. SB Davidson, H Garcia-Molina, D Skeen. Consistency in partitioned networks.
ACM Computing Surveys 17(3):341-370, 1985.

2. EW Dijkstra. EWD391 Self-stabilization in spite of distributed control. In Selected
Writings on Computing: A Personal Perspective, pages 41–46, Springer-Verlag,
1982. EWD391’s original date is 1973.

3. S Dolev. Self-Stabilization. MIT Press, 2000.
4. S Dolev and T Herman. Superstabilizing protocols for dynamic distributed sys-

tems. Chicago Journal of Theoretical Computer Science, 3(4), 1997.
5. A Fekete, D Gupta, V Luchangco, N Lynch, A Shvartsman. Eventually-serializable

data services. Theoretical Computer Science, 220:113-156, 1999.
6. S Ghosh, A Gupta, T Herman, and SV Pemmaraju. Fault-containing self-

stabilizing algorithms. In PODC’96 Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 45–54, 1996.

7. T Herman. Superstabilizing mutual exclusion. Distributed Computing, 13(1):1–17,
2000.

8. T Herman, T Masuzawa. Available stabilizing heaps. Information Processing Let-
ters 77:115-121, 2001.

9. T Herman, T Masuzawa. A stabilizing search tree with availability properties.
Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems (ISADS’01), pp. 398-405, March 2001.

10. JH Hoepman, M Papatriantafilou, P Tsigas. Self-stabilization of wait-free shared
memory objects. In Distributed Algorithms, 9th International Workshop Proceed-
ings (WDAG’95), Springer-Verlag LNCS:972, pp. 273-287, 1995.

11. B Lampson. How to build a aighly available system using consensus. In 10th Inter-
national Workshop on Distributed Algorithms (WDAG’96), Springer-Verlag LNCS
1151, pp. 1-17, 1996.

12. M Li, PMB Vitanyi. Optimality of wait-free atomic multiwriter variables. Infor-
mation Processing Letters, 43:107-112, 1992.

13. M Satyanarayanan. Scalable, secure, and highly available distributed file access.
IEEE Computer, 23(5):9-22, 1990.

14. G Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

	Introduction
	Availability, Stabilization, and Operations
	Available and Stabilizing Components
	Queues, Stacks, and Conservative Implementations
	Heap and Search Tree Review

	Composite Data Structure
	Heap and 2-3 Tree Composite Construction
	Variables, Constituent Structures, and Pointers
	Modifications to Constituent Operations
	New Background Activities
	Operations of the Composite
	Verification

	Conclusion

